1. In affine block cipher systems if f(m)=Am + t, what is f(m1+m2) ?

a) f(m1) + f(m2) + t

b) f(m1) + f(m2) + 2t

c) f(m1) + t

d) f(m1) + f(m2)

### View Answer

2. In affine block cipher systems if f(m)=Am + t, what is f(m1+m2+m3) ?

a) f(m1) + f(m2) + f(m3) + t

b) f(m1) + f(m2) + f(m3) +2t

c) f(m1) + f(m2) + f(m3)

d) 2(f(m1) + f(m2) + f(m3))

### View Answer

3. If the block size is ‘s’, how many affine transformations are possible ?

a) 2^{s} (2^{s}-1)(2^{s}-1)(2^{s}-1^{2})………(2^{s}-1^{(s-1)})

b) 2^{s} (2^{s}-1)(2^{s}-2)(2^{s}-2^{2})………(2^{s}-2^{(s-2)})

c) 2^{s}s (2^{s}-1)(2^{s}-2)(2^{s}-2^{2})………(2^{s}-2^{(s-1)})

d) 2^{s} (2^{s}-1)(2^{s}-2)(2^{s}-2^{2})………(2^{s}-2^{(s-3)})

### View Answer

^{s}(2

^{s}-1)(2

^{s}-2)(2

^{s}-2

^{2})………(2

^{s}-2

^{(s-1)}) is the maximum number of affine transformations possible for a block size ‘s’ matrix.

4. What is the number of possible 3 x 3 affine cipher transformations ?

a) 168

b) 840

c) 1024

d) 1344

### View Answer

5. Super-Encipherment using two affine transformations results in another affine transformation.

a) True

b) False

### View Answer

6. If the key is 110100001, the output of the SP network for the plaintext: 101110001 is

a) 110100011

b) 110101110

c) 010110111

d) 011111010

### View Answer

7. If the key is 110100001 where,

If ki=0, then S_i (x)=((1 1 0 | 0 1 1 | 1 0 0 ))x+((1 1 1))

and If ki=1, then S_i (x)=((0 1 1 | 1 0 1 | 1 0 0))x+((0 1 1))

then the output of the SP network for the plaintext: 101110001 is

a) 010110011

b) 111000011

c) 110110111

d) 010110110

### View Answer

8. Confusion hides the relationship between the ciphertext and the plaintext.

a) True

b) False

### View Answer

9. The S-Box is used to provide confusion, as it is dependent on the unknown key.

a) True

b) False

### View Answer

10.

This is an example of

a) SP Networks

b) Feistel Cipher

c) Hash Algorithm

d) Hill Cipher

### View Answer

11. Which of the following slows the cryptographic algorithm –

1) Increase in Number of rounds

2) Decrease in Block size

3) Decrease in Key Size

4) Increase in Sub key Generation

a) 1 and 3

b) 2 and 3

c) 3 and 4

d) 2 and 4