1. Bevel gears are used to have a gear drive between two intersecting shafts. True or false?

a) True

b) False

### View Answer

2. Bevel gears are equivalent to rolling ________

a) cubes

b) cones

c) spheres

d) cuboids

### View Answer

3. Identify the given gear.

a) Spur

b) Helical

c) Worm

d) Bevel

### View Answer

_{g}, ƴ

_{p}= pitch angles of gear and pinion respectively. r

_{g}, r

_{p}= pitch radii of gear and pinion respectively.

4. What is the formula to calculate the pitch angle of gear of a bevel gear using the radius?

a) y_{g} = tan^{-1} ((cos θ)/((r_{g}/r_{p})+sin θ))

b) y_{g} = tan^{-1} ((cos θ)/((r_{p}/r_{g})+sin θ))

c) y_{g} = tan^{-1} ((sin θ)/((r_{p}/r_{g})+cos θ))

d) y_{g} = tan^{-1} ((sin θ)/((r_{g}/r_{p})+cos θ))

### View Answer

_{g}= ((sin θ)/((r

_{p}/r

_{g})+cos θ)) Therefore, y

_{g}= tan

^{-1}((sin θ)/((r

_{p}/r

_{g})+cos θ)) Similarly, tan y

_{p}= ((sin θ)/((r

_{g}/r

_{p})+cos θ)) Therefore, y

_{p}= tan

^{-1}((sin θ)/((r

_{g}/r

_{p})+cos θ)).

5. What is the formula to calculate the pitch angle of pinion of a bevel gear using the angular velocity?

a) y_{p} = tan^{-1} ((cos θ)/((w_{g}/w_{p})+sin θ))

b) y_{p} = tan^{-1} ((cos θ)/((w_{p}/w_{g})+sin θ))

c) y_{p} = tan^{-1} ((sin θ)/((w_{g}/w_{p})+cos θ))

d) y_{p} = tan^{-1} ((sin θ)/((w_{p}/w_{g})+cos θ))

### View Answer

_{p}= ((sin θ)/((w

_{p}/w

_{g})+cos θ)) Therefore, y

_{p}= tan

^{-1}((sin θ)/((w

_{p}/w

_{g})+cos θ)) Similarly, tan y

_{g}= ((sin θ)/((w

_{g}/w

_{p})+cos θ)) Therefore, y

_{g}= tan

^{-1}((sin θ)/((w

_{g}/w

_{p})+cos θ)).

6. Which of the gears has the highest contact ratio?

a) Helical

b) Spur

c) Bevel

d) Worm

### View Answer

7. What is the working depth of the gear and the pinion of the bevel gears?

a) 2 m, 0.7 m

b) 0.7 m, 2 m

c) 3 m, 0.4 m

d) 0.4 m, 3 m

### View Answer

8. A pair of bevel gears is mounted on two intersecting shafts who have a shaft angle of 70°. The velocity ratio of the gears is 2. Find the pitch angles.

a) 42.21°, 27.79°

b) 48.14°, 21.86°

c) 39.29°, 30.71°

d) 46.95°, 23.05°

### View Answer

_{g}/w

_{p}= 1/2 tan y

_{g}= ((sin θ)/((w

_{g}/w

_{p})+cos θ)) = ((sin 70°)/((1/2)+cos 70°)) = 1.16 y

_{g}= 48.14° tan y

_{p}= ((sin θ)/((w

_{p}/w

_{g})+cos θ)) = ((sin 70°)/((2)+cos 70°)) = 0.4 y

_{p}= 21.86° We can confirm this by checking that y

_{g}+ y

_{p}= θ = 70°.

9. A pair of bevel gears is mounted on two intersecting shafts who have a shaft angle of 80°. The gear ratio of the gears is 1/3. Find the pitch angles.

a) 62.76°, 17.24°

b) 49.31°, 30.69°

c) 56.97°, 23.03°

d) 64.63°, 15.37°

### View Answer

_{g}/w

_{p}= 1/3 tan y

_{g}= ((sin θ)/((w

_{g}/w

_{p})+cos θ)) = ((sin 80°)/((1/3)+cos 80°)) = 1.94 y

_{g}= 62.76° tan y

_{p}= ((sin θ)/((w

_{p}/w

_{g})+cos θ)) = ((sin 80°)/((3)+cos 80°)) = 0.31 y

_{p}= 17.24° We can confirm this by checking that y

_{g}+ y

_{p}= θ = 80°.

10. The gear ratio of bevel gears = tan y_{g} = cot y_{p}. True or false?

a) True

b) False

### View Answer

_{1}/ω

_{2}= n

_{1}/n

_{2}=d

_{2}/d

_{1}= tan y

_{g}= cot y

_{p}. Thus, the statement is true.

### Synopsis and Project Report

You can buy synopsis and project from distpub.com. Just visit https://distpub.com/product-category/projects/ and buy your university/institute project from distpub.com